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Resumo 
A dragagem e a perturbação dos sedimentos em rios com condições oxidativo-redutoras, como o rio Araguaia, podem 
gerar riscos ambientais e à saúde, especialmente em áreas com altas concentrações de metais tóxicos, como ferro e 
mercúrio. Esses metais se acumulam nos sedimentos sob condições redutoras, e sua perturbação pode resultar em 
sua liberação na coluna d’água, afetando a teia trófica e a saúde humana. A planície de inundação do rio Araguaia é 
composta por depósitos aluvionares e rochas ígneas e metamórficas ricas em cromo, níquel, ferro, magnésio e mer-
cúrio. A conversão do uso do solo, especialmente para a agricultura, acelera o intemperismo e o transporte desses 
elementos para o rio. A dragagem dos sedimentos perturba a estabilidade de metais como ferro e mercúrio, aumen-
tando sua biodisponibilidade. O mercúrio, em particular, pode ser convertido em metilmercúrio, uma forma altamente 
tóxica e bioacumulativa que entra na cadeia alimentar aquática, afetando peixes, vida selvagem e seres humanos. 
O metilmercúrio se biomagnifica na teia alimentar, representando riscos para predadores de topo, incluindo aves 
piscívoras e seres humanos. Estudos mostram que o consumo de pescado em comunidades ribeirinhas pode levar 
a uma exposição significativa ao mercúrio, aumentando os riscos de danos neurológicos, doenças cardiovasculares 
e problemas no desenvolvimento infantil. Além disso, a dragagem pode agravar a qualidade da água, aumentando a 
turbidez e mobilizando elementos tóxicos como arsênio e cádmio. Os impactos ambientais da dragagem vão além da 
contaminação imediata, afetando a biodiversidade, a resiliência dos ecossistemas e a pesca, essencial para a subsis-
tência das comunidades locais. As consequências socioeconômicas incluem insegurança alimentar, perda de renda 
para pescadores e aumento dos custos no tratamento da água.
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Introdução

Rios com condições redox-sensíveis, como o Rio Araguaia 
no Brasil, são zonas críticas para o acúmulo e a possível 
mobilização de metais pesados. Em condições anóxicas 
ou redutoras, os sedimentos desses rios frequentemente 
atuam como sumidouros de longo prazo para metais 
tóxicos como ferro (Fe) e mercúrio (Hg), estabilizando-
-os por meio de diversos processos geoquímicos (Ullrich 
et al., 2001; Zhuang & Gao, 2013). No entanto, distúrbios 
antrópicos, especialmente a dragagem, podem romper 
esse equilíbrio ao expor sedimentos anóxicos ao oxigênio, 
desencadeando a oxidação e posterior liberação desses 
metais para a coluna d’água (Benoit et al., 2001; Driscoll 
et al., 2007).

Essa remobilização altera não apenas a especiação quí-
mica dos metais, mas também sua biodisponibilidade e 
toxicidade. Por exemplo, a oxidação de Fe(II) para Fe(III) 
resulta na formação de óxidos e hidróxidos férricos, que 

podem adsorver e transportar outros contaminantes como 
arsênio e cádmio (Warren & Haack, 2001). O mercúrio, 
quando liberado do sedimento em suas formas elementar 
ou inorgânica, pode ser metilado por atividade micro-
biana, formando metilmercúrio (MeHg), um composto 
neurotóxico capaz de se bioacumular e biomagnificar 
nas cadeias alimentares aquáticas (Mason et al., 1996; 
Clarkson & Magos, 2006).

Em sistemas dinâmicos do ponto de vista redox, como o 
Rio Araguaia, essas transformações biogeoquímicas têm 
implicações ecológicas e de saúde pública substanciais, 
especialmente em regiões onde o peixe representa um 
recurso alimentar essencial. Assim, compreender o com-
portamento ambiental de metais sequestrados e os riscos 
associados à perturbação dos sedimentos é fundamental 
para o desenvolvimento de estratégias sustentáveis de 
gestão de bacias hidrográficas.

Riscos geoquímicos da dragagem: liberação de 
metais e alterações biogeoquímicas no Rio Araguaia

A planície de inundação é constituída principalmente por 
terraços e depósitos aluvionares quaternários da Formação 
Araguaia, com ocorrência de rochas ígneas e metamórficas 
nas sub-bacias hidrográficas dos tributários da margem 
direita (CPRM, 2004). As rochas ígneas e metamórficas, 
derivadas de minerais máficos e ultramáficos, apresentam 
elevadas concentrações de cromo (Cr), níquel (Ni), ferro 
(Fe), magnésio (Mg) e mercúrio (Hg) (Amorosi et al., 2014, 
Lipp et al., 2020, Moraes et al., 2023). As rochas derivadas 
de minerais máficos e ultramáficos ocorrem nos tribu-
tários da bacia hidrográfica do rio Araguaia (Figura 1), 
assim, a conversão do uso do solo para atividades agrí-
colas acelera o processo de intemperismo e o transporte 
destes elementos para o canal principal do rio Araguaia e 
os lagos associados (Monteiro et al., 2025). Nesse sentido, 
as concentrações médias de Cr nos sedimentos dos lagos 
são 3,5 superiores ao limite de segurança estabelecido pelo 
CONAMA (Brasil, 2012), representando potenciais riscos 
às comunidades biológicas e à saúde humana (Monteiro 
et al., em revisão).

Adicionalmente, em rios oxidativo-redutores, metais como 
Fe e Hg tendem a ser sequestrados em sedimentos sob 
condições anóxicas. Por exemplo, o ferro frequentemente 
está presente na forma de Fe(II) em ambientes redutores, 
onde permanece relativamente estável (Linnik et al., 2023). 
A oxidação do ferro pode levar à formação de óxidos e 
hidróxidos férricos, que atuam como sequestradores de 
outros elementos tóxicos (Root et al., 2007; Feyte et al., 
2010; Liu et al., 2013). No entanto, essas partículas também 
podem ser mobilizadas e aumentar a turbidez na água, 
complicando ainda mais o destino dos metais pesados 
(Ullrich et al., 2001). De maneira semelhante, o mercúrio 
está comumente ligado em complexos de sulfetos, como 
o cinábrio (HgS), ou associado à matéria orgânica em 
condições redutoras, o que o torna menos biodisponível 
(Frieling et al., 2023). No entanto, a dragagem rompe esse 
equilíbrio, expondo os sedimentos anóxicos enterrados 
ao oxigênio, o que desencadeia a oxidação de Fe(II) para 
Fe(III) e a dissolução ou liberação de mercúrio em formas 
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Figura 1. Geologia regional e concentrações de mercúrio (Hg) nos sedimentos do canal principal do rio Araguaia.

mais reativas e tóxicas, como o metilmercúrio (MeHg) 
(Benoit et al., 2001; Zhuang & Gao, 2013).

Metilação e transporte de mercúrio na planície de 
inundação do Rio Araguaia

O mercúrio apresenta diferentes formas químicas, como 
mercúrio inorgânico (Hg2+), mercúrio elementar (Hg0) e 
o metilmercúrio (CH3Hg+). Dados preliminares do nosso 
grupo de pesquisa indicaram dois padrões importan-
tes para o transporte de transformação do Hg nos lagos 
(Figura 2). Os maiores valores da razão entre as concen-
trações de titânio e alumínio (Ti/Al) nos sedimentos de 
fundo indicam o maior intemperismo e contribuição de 
detrítitos litogênicos alóctones para a formação dos sedi-
mentos de fundo (Haberzettl et al., 2008). As medidas de 
sólidos totais dissolvidos (TDS) e de condutividade elétrica 
(Ec) são associadas à concentração de materiais dissol-
vidos em ecossistemas aquáticos, indicando a erosão do 
solo ou o intemperismo devido às mudanças sazonais do 
ciclo hidrológico (Ogwueleka, 2015), mas também pode 
indicar o impacto das atividades agrícolas (Cruz et al., 
2019). Considerando que nossas amostras foram coletadas 

no período de águas altas, a precipitação e o transporte 
lateral de água podem influenciar as medidas de TDS 
e Ec. No entanto, a associação destas variáveis com as 
concentrações de fósforo e fosfato reforçam o impacto 
das áreas agrícolas, indicando a lixiviação dos nutrientes 
aplicados na agricultura e provenientes dos dejetos dos 
animais (Bhateria e Jain, 2016). 

Por outro lado, a relação inversa das concentrações e pro-
porções de MeHg com a razão entre as concentrações de 
manganês e ferro (Mn/Fe) no sedimento de fundo, oxigênio 
dissolvido (OD) e pH da água, assim como a associação 
positiva com a proporção de áreas alagadas no entorno 
dos lagos, indicam o efeito positivo das condições redu-
toras para a metilação do Hg (DeLaune et al., 2004; Wang 
et al., 2021). A liberação de metilmercúrio, em particular, 
é motivo de grande preocupação devido à sua capacidade 
de bioacumulação e biomagnificação na cadeia alimentar 
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(Mason et al., 1996). Esse problema é notável na planície 
de inundação do rio Araguaia. A proporção de metilmer-
cúrio em relação ao mercúrio total (i.e., todas as formas 
químicas detectadas em uma amostra), é utilizada como 
um indicador da produção de metilmercúrio (Yu et al., 
2021). A mobilização do mercúrio total pelas atividades 
agrícolas e a metilação nas áreas alagadas resultam na 
produção elevada de MeHg na planície de inundação, 

com proporções de metilmercúrio no sedimento de 
fundo variam entre 0,9 e 22,1% (média ± desvio padrão: 
1,9 ± 3,2%). Assim, as alterações na disponibilidade do 
mercúrio inorgânico, as mudanças nos parâmetros físi-
co-químicos da água e a ressuspensão dos sedimentos 
de fundo promovidos pela dragagem pode representar 
potenciais riscos a diferentes grupos biológicos e popu-
lações humanas.

Biomagnificação do mercúrio na cadeia alimentar e 
potenciais riscos à saúde humana

A metilação microbiana do mercúrio em sedimentos 
perturbados pode aumentar significativamente os níveis 
de MeHg (Driscoll et al., 2007). O MeHg é prontamente 
absorvido pelo fitoplâncton e, subsequentemente, é trans-
portado para os níveis tróficos superiores através do zoo-
plâncton e macroinvertebrados bentônicos, até atingir os 
peixes (Molina et al., 2010, Lino et al., 2019, Li et al., 2021). 
À medida que os níveis de mercúrio aumentam nos pei-
xes, espécies predadoras, como aves, lontras e cetáceos 
que consomem peixe, experimentam cargas elevadas de 
mercúrio, levando a potenciais efeitos tóxicos ( Josef et al., 
2008, Mosquera-Guerra et al., 2019; Santos et al., 2021). 

Esses efeitos incluem o comprometimento do sucesso 
reprodutivo, danos neurológicos e até a morte em vida 
selvagem (Ullrich et al., 2001). Além disso, distúrbios nos 
níveis tróficos inferiores devido à toxicidade dos metais 
pesados podem levar a impactos em cascata, como a 
redução da biodiversidade e mudanças na composição 
da comunidade (Wiener et al., 2003; Zhuang & Gao, 2013).

A liberação de metilmercúrio no ambiente aquático 
também tem implicações significativas para a saúde 
pública, particularmente para comunidades que depen-
dem do peixe como fonte primária de proteína (Azevedo 
et al., 2022, Canela et al., 2024; Marchese et al., 2024). Nas 

Figura 2. Biplot representando a ordenação das variáveis e unidades amostrais de acordo com os resultados da 
Análise de Componentes Principais. MOS: matéria orgânica do sedimento. ORP: potencial de oxidação-redução. Prof: 
profundidade. Ec: condutividade elétrica. TDS: sólidos dissolvidos totais. LUI: intensidade do uso antrópico do solo. 
HAND: algorítimo Height Above the Nearest Drainage.
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populações humanas, o metilmercúrio é especialmente 
perigoso para mulheres gestantes e crianças pequenas, 
pois a exposição pré-natal pode resultar em atrasos no 
desenvolvimento, comprometimentos cognitivos e dis-
funções motoras (Clarkson & Magos, 2006). A exposição 
crônica ao metilmercúrio por meio do consumo de peixe 
contaminado também foi associada a doenças cardiovas-
culares em adultos e aumento dos riscos de distúrbios 
neurológicos, como a doença de Parkinson e Alzheimer 
(Guallar et al., 2002). 

Dados do nosso grupo de pesquisa indicam que, mesmo 
com concentrações relativamente baixas de mercúrio, a 
frequência de consumo de pescado pela população ribei-
rinha pode intensificar os riscos à saúde humana. Por 
exemplo, considerando o consumo baixo de pescado (50 g/
dia), espécies predadoras, como corvina (Plagioscion squa-
mosissimus), piranha (Pygocentrus nattereri e Serrasalmus 
sp.) e cachorra (Rhaphiodon vulpinus e Hydrolicus armatus) 
apresentam riscos à saúde humana. Porém, em taxas de 
consumo médias (100 g/dia) e altas (200 g/dia), espécies 
não-predadoras amplamente consumidas pela popula-
ção local representam riscos às populações ribeirinhas, 
como branquinha (Curimata inornata e Psectrogaster ama-
zonica), sardinha (Triportheus sp.) e avoador (Hemiodus 
sp.) (Figura 3). 

Apesar de não haver dados oficiais sobre o consumo de 
pescado pelas comunidades ribeirinhas do rio Araguaia, 
um estudo realizado no final da década de 1990 demons-
trou que o pescado representava apenas 10% da proteína 
consumida pela população do Araguaia, diferente das 
comunidades ribeirinhas do rio Amazonas e rio Negro, 
onde o pescado era a principal fonte de proteína (Begossi 
et al., 2000). No entanto, um estudo recente indicou que, 
entre 75 pescadores artesanais do Médio Araguaia, no 
estado de Tocantins, 85% consomem pescado de três a 
sete vezes por semana (Mendes-Filho et al., 2020). Silva 
et al. (2019) também destacaram que o pescado ainda 
representa uma importante fonte de proteína para as 
comunidades indígenas da etnia Karajá que habitam o 
Médio Araguaia. 

Consequências ambientais 
e socioeconômicas

As consequências ambientais da dragagem vão além dos 
danos ecológicos imediatos. A desestabilização dos sedi-
mentos pode resultar em degradação de habitat, particu-
larmente para organismos bentônicos que dependem de 
substratos estáveis (Day et al., 1995; Zweig e Rabeni, 2001). 
A ressuspensão de sedimentos também pode sufocar habi-
tats, reduzindo a abundância e diversidade de espécies 

bentônicas, que são cruciais para a ciclagem de nutrientes 
e a dinâmica da teia alimentar (Adámek e Maršálek, 2012). 
Ao longo do tempo, essa perda de organismos bentônicos 

Figura 3. Estimativa de ingestão de Hg através do 
consumo de pescado. Branquinha (Curimata inornata 
e Psectrogaster amazonica), Avoador (Anodus sp. e 
Hemiodus sp.), Curimatã (Prochilodus nigricans), Piau 
(Laemolyta sp. e Leporinus sp.), Sardinha (Triportheus 
sp.), Corvina (Plagioscion squamosissimus), Piranha 
(Pygocentrus nattereri e Serrasalmus sp.) e Cachorra 
(Rhaphiodon vulpinus e Hydrolycus armatus).
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pode comprometer a resiliência do ecossistema e reduzir a 
capacidade dos rios de filtrar contaminantes (Millennium 
Ecosystem Assessment, 2005).

De uma perspectiva socioeconômica, a degradação dos 
recursos pesqueiros devido à contaminação por metais 
pesados poderia afetar severamente as comunidades que 

dependem do peixe como fonte primária de alimento e 
renda. A perda de biodiversidade e serviços ecossistêmicos, 
como a purificação da água e a produtividade das pescas, 
pode levar a custos aumentados no tratamento de água 
e a desafios de segurança alimentar para as populações 
afetadas (Mergler et al., 2007).

Considerações finais e recomendações de gestão

A dragagem e a agitação de sedimentos em rios altamente 
oxidativo-redutores com altas concentrações de ferro e 
mercúrio representam sérios riscos ambientais e à saúde 
pública. A liberação de metais tóxicos, particularmente 
metilmercúrio, pode perturbar os ecossistemas aquáti-
cos por meio da biomagnificação na cadeia alimentar e 
causar danos neurológicos e reprodutivos a longo prazo 
tanto para a vida selvagem quanto para os humanos. 

Diante desse contexto, recomenda-se que a dragagem 
de sedimentos seja evitada, salvo em situações absolu-
tamente imprescindíveis e devidamente justificadas por 
estudos de impacto ambiental robustos, adotando técnicas 
de dragagem menos intrusivas. Como alternativa à inter-
venção direta, estratégias de gestão baseadas no princípio 
da precaução devem ser adotadas, priorizando medidas 
de preservação das condições naturais de deposição e 

estabilização dos sedimentos, incluindo a preservação e 
recuperação da vegetação ripária para reduzir processos 
erosivos, e o controle rigoroso da ocupação e do uso do 
solo nas margens do rio Araguaia e nas sub-bacias hidro-
gráficas dos tributários.

Adicionalmente, recomenda-se o estabelecimento de 
programas permanentes de monitoramento ambiental, 
com foco na qualidade dos sedimentos, da água e da 
biota aquática, a fim de detectar precocemente sinais 
de instabilidade geoquímica ou aumento da biodisponi-
bilidade de metais. Assim, a manutenção dos processos 
naturais, associada a estratégias preventivas de gestão, 
representa a abordagem mais segura e sustentável para 
proteger a integridade ecológica do rio Araguaia e a saúde 
das populações humanas dependentes de seus recursos.
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